
Units, measurement, uncertainties and vectors 
 
 

1.1 Measurement in physics 
Physics is an experimental science in which measurements made must be expressed in units. In the 
international system of units used throughout this book, the SI system, there are seven fundamental 
units, which are defined in this section. All quantities are expressed in terms of these units directly, or as 
a combination of them. 
 
The SI system 
 
The SI system (short for Système International d’Unités) has seven fundamental base units. Since May 
2019, new definitions have been given for all seven base units. The new definitions make use of seven 
physical constants whose numerical value is taken to be exact and fixed. 
 

Unit Symbol Quantity Natural constant 
involved 

Second s Time ΔfCS  

Metre m Length c 

Kilogram kg Mass h 

Ampere A Electric current e 

Kelvin K Temperature kB 

Mole mol Amount of substance NA 

Candela cd Luminous intensity KCD 

 
 
 Thus the kilogram, for example, which used to be defined in terms of a certain quantity of a platinum–
iridium alloy kept at the Bureau International des Poids et Mesures in France, is now defined in terms of 
the Planck constant, h. 
 
1 The second (s). This is the unit of time. The second is that length of time so that the electromagnetic 

radiation emitted in a transition between the two hyperfine energy levels in the ground state of a 

caesium-133 atom has the exact frequency  ΔfCS = 9 192 631 770 s-1. Thus, 
CS

9 192 631 770
1 s

f
=


. 

2 The metre (m). This is the unit of distance. The metre is that length so that the speed of light has the 

exact value 1299 792 458 m sc −=  and so 

1

CS CS

9 192 631 770
1m s 3.066 331 899 10

299 792 458 299 792 458

c c c

f f
=  =  =  

 
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3 The kilogram (kg). This is the unit of mass. The kg is that mass for which the Planck constant has the 

exact value 34 2 16.626 070 15 10 kg m sh − −=  and so  



CS
34 2 34

1 2
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40CS
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4 The ampere (A). This is the unit of electric current. 1 A is that current for which the electric charge 
transferred within 1 s is 1 Coulomb.  The elementary charge is exactly e = 1.602 176 63410-19 C. Thus 

8CS
CS19

1 C
1 A 6.789 686 817 10

1 s 1.602 176 634 10 9 192 631 770

e f
e f

−


= =  =   


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5 The kelvin (K). This is the unit of temperature. One kelvin is that temperature for which the product 

with the Boltzmann, B 1 Kk   is exactly equal to 23 23 2 21.380 649 10 J 1.380 649 10 kg m  s− − − =  . Hence 
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6 The mole (mol). This is the unit of amount of substances. One mole of a substance contains as many 

particles as the Avogadro number which has the exact value 23
A 6.022 140 760 10N =  . Thus 

23

A

1
1mol 6.022 140 760 10

N
=   . 

7 The candela (cd). We will not deal with this unit at all and we will not define it. 
 
You do not need to know the details of these definitions. 

 
Physical quantities other than those above have units that are combinations of the seven fundamental 
units. They have derived units. For example, speed has units of distance over time, metres per second 
(i.e. m/s or, preferably, m s−1). Acceleration has units of metres per second squared (i.e. m/s2, which we 
write as m s−2). Similarly, the unit of force is the newton (N). It equals the combination kg m s−2. Energy, 
a very important quantity in physics, has the joule (J) as its unit. The joule is the combination N m and so 
equals (kg m s−2 m), or kg m2 s−2. The quantity power has units of energy per unit of time, and so is 
measured in J s−1. This combination is called a watt (W). Thus: 

( ) ( )1 1 2 1 2 31W (1J s ) 1N m s 1kgm s m s 1kgm s− − − − −= = = =
 

Pressure is measured in a unit called pascal (Pa) and equals 2 2 2 1 21Pa 1N m 1kg m s m 1kg m s− − − − −= = = .  

 

Working backwards, a quantity with units 3kg s− must be: 
3 2 1 1 1 1 1 2 1 2 2kg s (kgms )s m N s m (N m) s m J s m W m− − − − − − − − − − −= = = = =  and so represents power per unit 

area i.e. intensity. 
 
Metric multipliers 
Small or large quantities can be expressed in terms of units that are related to the basic ones by powers 
of 10. Thus, a nanometre (nm) is 10−9 m, a microgram (µg) is 10−6 g = 10−9 kg, a gigaelectron volt (GeV) 
equals 109 eV, etc. The most common prefixes are given in Table 1. 
 



Power Prefix Symbol Power Prefix Symbol 

10−18 atto- a 101 deka- da 

10−15 femto- f 102 hecto- h 

10−12 pico- p 103 kilo- k 

10−9 nano- n 106 mega- M 

10−6 micro- μ 109 giga- G 

10−3 milli- m 1012 tera- T 

10−2 centi- c 1015 peta- P 

10−1 deci- d 1018 exa- E 

Table 1 Common prefixes in the SI system. 

 
Orders of magnitude and estimates 
Expressing a quantity as a plain power of 10, the exponent of 10 is what is called the order of magnitude 
of that quantity. Thus, the mass of the universe which is 1053 kg has an order of magnitude of 53; the 
mass of the Milky Way galaxy is 1041 kg and so has an order of magnitude of 41. The ratio of the two 
masses is then simply 1012, an order of magnitude 12. 
 

Tables 2, 3 and 4 give examples of some interesting lengths, masses and times. 
 

Lengths/ m 

distance to edge of observable universe 1026 

distance to the Andromeda galaxy 1022 

diameter of the Milky Way galaxy 1021 

distance to nearest star (other than the Sun) 1016 

diameter of the solar system 1013 

distance to the Sun 1011 

radius of the Earth 107 

size of a cell 10−5 

size of a hydrogen atom 10−10 

size of an A = 50 nucleus 10−15 

size of a proton 10−15 

Planck length 10−35 



 
Table 2 Some interesting distances. 
 

Masses/ kg 

the Universe  1053 

the Milky Way galaxy  1041 

the Sun  1030 

the Earth  1024 

Antonov AN-225 (fully loaded)  106 

an apple  0.2 

a raindrop  10−6 

a bacterium  10−15 

smallest virus  10−21 

a hydrogen atom  10−27 

an electron  10−30 

 
Table 3 Some interesting masses. 
 

Times/ s 

age of the Universe  1017 

age of the Earth  1017 

time of travel by light to nearby star (other 
than the Sun) 

 108 

one year  107 

one day  105 

period of a heartbeat  1 

lifetime of a pion  10–8 



lifetime of the omega particle  10–10 

time of passage of light across a proton  10–24 

Table 4 Some interesting times. 
 

Worked examples 
1.1 Estimate how many grains of sand are required to fill the volume of the Earth. (This is a classic 

problem that goes back to Aristotle. The radius of the Earth is about 6 × 106 m.) 
 

Answer 
The volume of the Earth is: 

( )
33 6 20 21 34 4

π 3 6 10 8 10 10 m
3 3

R       
 

The diameter of a grain of sand varies of course, but we will take 1 mm as a fair estimate. The volume of 
a grain of sand is about (1 × 10−3)3 m3. 

Then the number of grains of sand required to fill the Earth is: 

( )

21
30

33

10
10

1 10−




 

1.2 Estimate the speed with which human hair grows. 
 

Worked examples 
I have my hair cut every two months and the barber cuts a length of about 2 cm. The speed is therefore: 

2 2
1
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6 6
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2 10 10
ms
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10 10
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− −
−

− −

− −


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1.3 Estimate how long the line would be if all the people on Earth were to hold hands in a straight line. 
Calculate how many times it would wrap around the Earth at the equator. (The radius of the Earth is 
about 6 × 106 m.) 

 

Answer 
Assume that each person has his or her hands stretched out to a distance of 1.5 m and that the 
population of Earth is 8 × 109 people.  

Then the length of the line of people would be 9 108 10 1.5m 10 m.    

The circumference of the Earth is 6 72π 6 6 10 m 4 10 m.R       

So the line would wrap 
10

7

10
250

4 10



 times around the equator. 

1.4 Estimate how many apples it takes to have a combined mass equal to that of an ordinary family car.  
 



Answer 
Assume that an apple has a mass of 0.2 kg and a car has a mass of 1400 kg.  

Then the number of apples is 31400
7 10 .

0.2
=   

1.5 Estimate the time it takes light to arrive at Earth from the Sun. (The Earth–Sun distance is 1.5 × 1011 
m.) 
 

Answer 

The time taken is 
11

3

8

distance 1.5 10
0.5 10 500s 8min

speed 3 10


=   = 


 

 
Significant figures 
The number of digits used to express a number carries information about how precisely the number is 
known. A stopwatch reading of 3.2 s (two significant figures, s.f.) is less precise than a reading of 3.23 s 
(three s.f.). 

 
How to find the number of significant figures in a number is illustrated in Table 5. 
 

Number Number of s.f. Reason Scientific notation 

504 3 in an integer all digits count (if last digit is 
not zero) 

5.04 × 102 

1200 2 zeros at the end of an integer do not count 1.2 × 103 

200 1 zeros at the end of an integer do not count  2 × 102 

0.000 305 3 zeros in front of a decimal do not count 3.05 × 10−4 

0.000 90 2 zeros at the end of a decimal count, those in 
front do not 

9.0 × 10−4 

Table 5 Rules for significant figures. 
 
Scientific notation means writing a number in the form a × 10b, where a is decimal such that 1 ≤ a < 10 
and b is a positive or negative integer. The number of significant figures in a is the number of significant 
figures in a × 10b.  

In multiplication or division (or in raising a number to a power or taking a root), the result must have 
as many significant figures as the least precisely known number entering the calculation. So we have 
that:  

4

2 s.f. 3 s.f. 2 s.f.

23 578 13294 1.3 10 =  
 

4 s.f. 0

2 s.f.
2s.f.

6.244

5.20333... 5.2 10 5.2
1.2

=   =  

3 3

3 s.f. 3 s.f.

12.3 1860.867... 1.86 10=    



2

2 s.f.2 s.f.

58000 240.8318... 2.4 10=    

In adding and subtracting, the number of decimal digits in the answer must be equal to the least number 
of decimal places in the numbers added or subtracted. Thus:  

1d.p.2d.p. 1d.p.

3.21 4.1 7.32 7.3+ = 
 

2 d.p. 2 d.p.3 d.p.

12.367 3.15 9.217 9.22− = 
 

Use the rules for rounding when writing values to the correct number of decimal places or significant 
figures. For example, the number 542.48 = 5.4248 × 102 rounded to 2, 3 and 4 s.f. becomes: 

2 2

2 2

2 2

5.4|248 10 5.4 10 rounded to 2s.f.

5.42|48 10 5.42 10 rounded to 3s.f.

5.424|8 10 5.425 10 rounded to 4s.f.

  

  

  

 

There is a special rule for rounding when the last digit to be dropped is 5 and it is followed only by zeros, 
or not followed by any other digit. This is the odd–even rounding rule. For example, consider the 
number 3.250 000 0… where the zeros continue indefinitely. How does this number round to 2 s.f.? 
Because the digit before the 5 is even we do not round up, so 3.250 000 0… becomes 3.2. But 3.350 000 
0… rounds up to 3.4 because the digit before the 5 is odd. (There is no universal agreement about this 
rule.) 
 
Nature of science 
Early work on electricity and magnetism was hampered by the use of different systems of units in 
different parts of the world. Scientists realised they needed to have a common system of units in order 
to learn from each other’s work and reproduce experimental results described by others. Following an 
international review of units that began in 1948, the SI system was introduced in 1960. At that time 
there were six base units. In 1971 the mole was added, bringing the number of base units to the seven 
in use today. A major review took place in 2019 with the result that the seven base units are now 
defined in terms of fixed  fundamental constants. 

As the instruments used to measure quantities have developed, the definitions of standard units have 
been refined to reflect the greater precision possible. Using the transition of the caesium-133 atom to 
measure time has meant that smaller intervals of time can be measured accurately. The SI system 
continues to evolve to meet the demands of scientists across the world. Increasing precision in 
measurement allows scientists to notice smaller differences between results, but there is always 
uncertainty in any experimental result. There are no ‘exact’ answers. 

  Test yourself 

 1 How long does light take to travel across a proton? 
 2 How many hydrogen atoms does it take to make up the mass of the Earth? 
 3 What is the age of the universe expressed in units of the Planck time? 
 4 How many heartbeats are there in the lifetime of a person (85 years)? 
 5 What is the mass of our galaxy in terms of a solar mass? 
 6 What is the diameter of our galaxy in terms of the astronomical unit, i.e. the distance between the 

Earth and the Sun (1 AU = 1.5×1011 m)? 
 7 The molar mass of water is 18 g mol−1. How many molecules of water are there in a glass of water 

(mass of water 200 g)? 



 8 Assuming that the mass of a person is made up entirely of water, how many molecules are there in 
a human body (of mass 60 kg)? 

 9 Give an order-of-magnitude estimate of the density of a proton. 
 10 How long does light take to traverse the diameter of the solar system (1013 m)? 
 11 An electron volt (eV) is a unit of energy equal to 1.6 × 10−19 J. An electron has a kinetic energy of 2.5 

eV. 
  a How many joules is that? 
  b What is the energy in eV of an electron that has an energy of 8.6 × 10−18 J? 
 12 What is the volume in cubic metres of a cube of side 2.8 cm? 
 13 What is the side in metres of a cube that has a volume of 588 cubic millimetres? 
 14 Give an order-of-magnitude estimate for the mass of: 
  a an apple 
  b this physics book 
  c a soccer ball. 
 15 A white dwarf star has a mass about that of the Sun and a radius about that of the Earth. Give an 

order-of-magnitude estimate of the density of a white dwarf. 
 16 A sports car accelerates from rest to 100 km per hour in 4.0 s. What fraction of the acceleration due 

to gravity is the car’s acceleration? 
 17 Give an order-of-magnitude estimate for the number of electrons in your body. 
 18 Give an order-of-magnitude estimate for the ratio of the electric force between two electrons 1 m 

apart to the gravitational force between the electrons. 
 19 The frequency f of oscillation (a quantity with units of inverse seconds) of a mass m attached to a 

spring of spring constant k (a quantity with units of force per length) is related to m and k. By writing 

x yf cm k=  and matching units on both sides, show that ,
k

f c
m

=  where c is a dimensionless 

constant. 
 20 A block of mass 1.2 kg is raised a vertical distance of 5.55 m in 2.450 s. Calculate the power  

delivered. 
2and =9.81ms

mgh
P g

t
− 

= 
 

 

 21 Find the kinetic energy 
2

K

1

2
E mv
 

= 
 

 of a block of mass 5.00 kg moving at a speed of 12. 5 m s−1. 

 22 Without using a calculator, estimate the value of the following expressions. Then compare your 
estimate with the exact value found using a calculator. 

a 
243

43
 

b 2.80 1.90  

c 
480

312
160

  

d 
( )

9 16 6

22

8.99 10 7 10 7 10

8 10

− −    


 

e 
( )

11 24

26

6.6 10 6 10

6.4 10

−  


 

 
 

 



1.2 Systematic and random uncertainties 
This section introduces the basic methods of dealing with experimental uncertainty. Physics is an 
experimental science and often the experimenter will perform an experiment to test the prediction of a 
given theory or measure the value of a physical quantity. No measurement will ever be completely 
accurate, however, and so the result of every experiment will be presented with an experimental 
uncertainty.  
 
Types of uncertainty 
There are two main types of uncertainty in a measurement. They can be grouped into systematic and 
random, although in many cases it is not possible to distinguish clearly between the two. We may say 
that random uncertainties are almost always the fault of the observer, whereas systematic uncertainties 
are due to both the observer and the instrument being used.  
 
Systematic uncertainties 
A systematic uncertainty makes all measurements either larger or smaller than the true value. If you 

use a metal ruler which was calibrated at 20 C  to measure length of a wooden box on a very hot day 

with temperature 40 C , your measurements will be too small because the metal ruler expanded in the 

hot weather (more than the wood). If you use an ammeter that shows a current of 0.1 A even before it 
is connected to a circuit, every measurement of current made with this ammeter will be larger than the 
true value of the current by 0.1 A. This is called a zero error.  
 
You cannot eliminate systematic uncertainties by measuring the same quantity very many times and 
then taking an average. You have to check your instruments and re-evaluate your methods of taking 
measurements. 
 
There will be a systematic uncertainty in measuring the volume of a liquid inside a graduated cylinder if 
the tube is not exactly vertical. The measured values will always be larger or smaller than the true value, 
depending on which side of the cylinder you look at (Figure 1a). There will also be a systematic 
uncertainty if your line of sight is not normal to the scale (Figure 1b). These are called parallax errors. 



      

                                               a                                                                                     b 
 
Figure 1 Parallax errors in measurement. 
 
Another source of systematic uncertainty is the reaction time of a human in starting and stopping a 
stopwatch. 
 
Suppose you are investigating Newton’s second law by measuring the acceleration of a cart as it is being 
pulled by a falling weight of mass m (Figure 2). (There are weights in the cart and one by one are moved 
from the cart and attached to the vertical string so that the mass of the system is constant.) Almost 
certainly there is a frictional force f between the cart and the table surface. If you neglect to take this 
force into account, you would expect the cart’s acceleration a to be: 

mg
a

M
=

 

 

Figure 2 The falling block accelerates the cart. 
 
where M is the constant combined mass of the system. 

 



The graph of the acceleration versus m would be a straight line through the origin, as shown by the 
red line in Figure 3. If you actually do the experiment, you will find that you do get a straight line, but 
not through the origin (blue line in Figure 3). There is a negative intercept on the vertical axis. 

 

Figure 3 The variation of acceleration with falling mass with (blue) and without (red) frictional forces.  
 
This is because with the frictional force present, Newton’s second law predicts that: 

mg f
a

M M
= −

 

So a graph of acceleration a versus mass m would give a straight line with a negative intercept on the 
vertical axis. 
 

Common systematic errors 

Zero error Instrument does not show zero when it should. 

Parallax error Instrument viewed from wrong angle. 

Calibration error Instrument used gives different results from a 
standard reference instrument. 

Reaction time Instrument started too late. 

 
Random uncertainties 
The presence of random uncertainty is revealed when repeated measurements of the same quantity 
show a spread of values, some too large some too small. Unlike systematic uncertainties, which are 
always biased to be in the same direction, random uncertainties are unbiased. Suppose you ask ten 
people to use stopwatches to measure the time it takes an athlete to run a distance of 100 m. They 
stand by the finish line and start their stopwatches when the starting pistol fires. You will most likely get 
ten different values for the time. This is because some people will start/stop the stopwatches too early 
and some too late. You would expect that if you took an average of the ten times you would get a better 
estimate for the time than any of the individual measurements: the measurements fluctuate about 
some value. Averaging many measurements gives a more accurate estimate of the result. (See the 
section on accuracy and precision, overleaf.)  
 

We include within random uncertainties, reading uncertainties (which really is a different type of 
uncertainty altogether). These have to do with the precision with which we can read an instrument. 
Suppose we use a ruler to record the position of the right end of an object, Figure 4. 

 
The first ruler has graduations separated by 0.2 cm. We are confident that the position of the right 



end is greater than 23.2 cm and smaller than 23.4 cm. The true value is somewhere between these 
bounds. The average of the lower and upper bounds is 23.3 cm and so we quote the measurement as 

( )23.3 0.1 cm.  Notice that the uncertainty of ± 0.1 cm is half the smallest graduation on the ruler (0.2 

cm).  
 
Now let us use a ruler with a finer scale. We are again confident that the position of the right end is 

greater than 32.3 cm and smaller than 32.4 cm. The true value is somewhere between these bounds. 

The average of the bounds is 32.35 cm so we quote a measurement of ( )32.35 0.05 cm.  Notice again 

that the uncertainty of ± 0.05 cm is half the smallest graduation on the ruler (0.1 cm). This gives the 
general rule for analogue instruments: 

 

Figure 4 Two rulers with different graduations. The top has a width between graduations of 0.2 cm and 
the other 0.1 cm. To measure a length we need to make two measurements, one at each end. 
 
The uncertainty in reading an instrument is ± half of the smallest width of the graduations on the 
instrument. 
 
To measure a length of, say a rod, you must record the position of both ends of the rod. In Figure 4, the 
left end is between 32.0 cm and 32.1 cm so we quote (32.05 ± 0.05) cm. The right end is between 35.6 
cm and 35.7 so we quote (35.65 ± 0.05) cm. The length of the object is then (4.6 ± 0.1) cm. This is 
because the uncertainties at each end add up as we will explain in the next section. 
 
For digital instruments, we may take the reading uncertainty to be the smallest division that the 
instrument can read. So, a stopwatch that reads time to two decimal places, e.g. 25.38 s, will have a 
reading uncertainty of ± 0.01 s, and a weighing scale that records a mass as 184.5 g will have a reading 
uncertainty of ± 0.1 g. Table 6 shows the typical precision for some common instruments. 
 

Instrument Precision of measurement 

standard ruler ± 0.5 mm for each end of object so ± 1 mm 

vernier calipers ± 0.1 mm 

micrometer ± 0.01 mm 

electronic weighing scale ± 0.1 g 



stopwatch ± 0.01 s 

 
Table 6 Typical precision for some common instruments. 
 
Accuracy and precision 
In physics, a measurement is said to be accurate if the systematic uncertainty in the measurement is 
small. This means in practice that the measured value is very close to the accepted value for that 
quantity (assuming that this is known – it is not always). The term error is used to indicate the difference 

between the measured value and the accepted value of that quantity: measured acceptede Q Q= − .  

 
A measurement is said to be precise if the random uncertainty is small. This means in practice that when 
the measurement is repeated many times, the individual measurements are close to each other. We 
normally illustrate the concepts of accuracy and precision with the diagrams in Figure 5: the red stars 
indicate individual measurements. The ‘true’ value is represented by the common centre of the three 
circles, the ‘bull’s-eye’. Measurements are precise if they are clustered together. They are accurate if 
they are close to the centre. The descriptions of three of the diagrams are obvious; the bottom right 
clearly shows results that are not precise because they are not clustered together. But they are accurate 
because their average value is roughly in the centre. 

 

Figure 5 The meaning of accurate and precise measurements. Four different sets of four measurements 
each are shown. 
 
The same idea is represented in Figure 6: Suppose we measure a quantity x very many times and record 
the number N a particular value of x shows up. We will get a normal distribution. The following graphs 
show four possibilities. 
 



  

                   a Accurate and precise                                                      b Accurate but not precise 
 

  

                   c Not accurate but precise                                                d Not accurate and not precise 
 
Figure 6 The meaning of accurate and precise measurements.  
 
In a the mean is very close to the actual true value of the quantity (accurate) and the spread of values is 
very small (precise). In b the mean is again close to the true value so the measurements are accurate but 
the spread of values is large (not precise). And similarly for c and d. 
 
Averages 
In an experiment a measurement must be repeated many times, if at all possible. If it is repeated N 
times and the results of the measurements are x1, x2, …, xN, we calculate the mean or the average of 

these values ( x ) using: 

1 2 N...x x x
x

N

+ + +
=

 

This average is the best estimate for the quantity x based on the N measurements. What about the 
uncertainty? One way is to get the standard deviation of the N numbers using your calculator. Standard 
deviation will not be examined but you may need to use it for your Internal Assessment, so it is a good 
idea to learn it – you will learn it in your mathematics class anyway. The standard deviation σ of the N 
measurements is given by the formula (the calculator finds this very easily): 
 

( ) ( ) ( )
2 2 2

1 2 ... Nx x x x x x

N


− + − + + −
=

 
or

 

( ) ( ) ( )
2 2 2

1 2 ...

1
Nx x x x x x

N


− + − + + −
=

−
 

 
(For our purposes, it makes little difference whether N or N – 1 is used in the denominator.) 

x

N

True value

x

N

True value

x

N

True value

x

N

True value



 
A simpler method (not entirely satisfactory but acceptable for this course) is to use as an estimate of the 
uncertainty the quantity: 

max min

2

x x
x

−
 =

 

i.e. half of the difference between the largest and the smallest value.  
 
 

You will often see uncertainties with 2 s.f. in the scientific literature. For example, the mass of the 

electron is quoted as: ( ) 319.10938291 0.00000040 10 kg.em −=    This is perfectly all right and reflects 

the experimenters’ level of confidence in their results. Expressing the uncertainty to 2 s.f. implies a 
more sophisticated statistical analysis of the data than what is normally done in a high school physics 
course. With a lot of data, the measured values of the electron mass form a normal distribution with a 

mean 319.109 382 91 10 kgem −=  and standard deviation 310.00000040 10 kg.− The experimenter is 

then 68% confident that the true value of the mass lies within a standard deviation of the mean i.e. in 
the interval [9.109 382 51 × 10−31 kg, 9.109 383 31 × 10−31 kg]. 

 

Worked example 
1.6 The diameter of a steel ball is to be measured using a micrometer. The following are sources of 

uncertainty: 
1 The ball is not centred between the jaws of the micrometer. 
2 The jaws of the micrometer are tightened too much. 
3 The temperature of the ball may change during the measurement. 
4 The ball may not be perfectly round. 
Determine which of these are random and which are systematic sources of uncertainty. 

Answer 
Sources 3 and 4 lead to unpredictable results, so they are random uncertainties. Source 2 means that 
the measurement of diameter is always smaller since the micrometer is tightened too much, so this is 
a systematic source of uncertainty. Source 1 certainly leads to unpredictable results depending on how 
the ball is centred, so it is a random source of uncertainty. But since the ball is not centred the 
‘diameter’ measured is always smaller than the true diameter, so this is also a source of systematic 
uncertainty. 

 
Propagation of uncertainties 
 
A measurement of a length may be quoted as L = (25.0 ± 0.5) cm. The value 25.0 is called the best 
estimate or the mean value of the measurement and the 0.5 cm is called the absolute uncertainty in 
the measurement. The ratio of absolute uncertainty to mean value is called the fractional uncertainty. 
Multiplying the fractional uncertainty by 100% gives the percentage uncertainty. So, for L = (25.0 ± 0.5) 
cm we have that: 
 
• mean value = 25.0 cm 
• absolute uncertainty = 0.5 cm 

• fractional uncertainty 
0.5

0.02
25.0

= =  

• percentage uncertainty 0.02 100% 2.0%=  =  



 
Notice that in this course we express uncertainties to 1 s.f. and the place value of the digit in the 
uncertainty must match the best estimate. Thus 

Acceptable Not acceptable 

3.28 0.02  5.52 0.2  or 5.52 0.002  

23.4 0.1  14.4 1  or 14.4 0.01  

34.515 0.003  28.115 0.04  or 

28.115 0.0004  

48 2  56 0.2  

 
 
In general, if a = a0 ± ∆a, we have: 
 
• a0 is the mean value of a 
•   absolute uncertainty = ∆a 

• fractional uncertainty 
0

a

a


=   

• percentage uncertainty 
0

100%
a

a


=   

 
Suppose that three quantities are measured in an experiment: a = a0 ± ∆a, b = b0 ± ∆b, c = c0 ± ∆c. We 
now wish to calculate a quantity Q in terms of a, b, c. For example, if a, b, c are the sides of a rectangular 
block we may want to find Q = ab, which is the area of the base, or Q = 2a + 2b, which is the perimeter 
of the base, or Q = abc, which is the volume of the block. Because of the uncertainties in a, b, c there will 
be an uncertainty in the calculated quantities as well. How do we calculate this uncertainty? 

 
There are three cases to consider. We will give the results without proof. 

 
Addition and subtraction 
The first case involves the operations of addition and subtraction. For example, we might have Q = a + b 
or Q = a − b or Q = a + b − c. Then, in all cases the absolute uncertainty in Q is the sum of the absolute 
uncertainties in a, b and c. 
 

Q a b Q a b

Q a b Q a b

Q a b c Q a b c

= +   = +

= −   = +

= + −   = + +

 

Exam tip 
In addition and subtraction, we always add the absolute uncertainties, never subtract. 

 

If we multiply a quantity by a precisely known number, e.g.:  5Q a=  then 5Q a =   and if Q a=  

then Q a =  . 

 

Worked examples 
1.7 A ruler with 1 mm graduations is used to measure the side a of a square. One end of the square is at 

(2.00 ± 0.05) cm and the other end at (14.40 ± 0.05) cm side a of a square. Find the length of the 
side and the perimeter P of the square. 



 

Answer 
a = 14.40 – 2.00 = 12.40 cm. The uncertainty is 0.05 + 0.05 = 0.1 cm. Hence the side is (12.4 ± 0.1) cm. 
 
Because P = 4a , the perimeter is 49.6 cm. The absolute uncertainty in P is: ∆P = 4∆a = 0.4 cm. 

Thus, ( )49.6 0.4 cm.P =   

 
1.8 Find the percentage uncertainty in the quantity Q = a − b, where a = 538.7 ± 0.3 and b = 537.3 ± 0.5. 

Comment on the answer. 
 

Answer 
The calculated value is 1.4 and the absolute uncertainty is 0.3 + 0.5 = 0.8. So Q = 1.4 ± 0.8. 

The fractional uncertainty is 
0.8

0.57
1.4

= , so the percentage uncertainty is 57%.  

The fractional uncertainty in the quantities a and b is quite small. But the numbers are close to each 
other so their difference is very small. This makes the fractional uncertainty in the difference 
unacceptably large. 
 
 
Multiplication and division 
The second case involves the operations of multiplication and division. Here the fractional uncertainty 
of the result is the sum of the fractional uncertainties of the quantities involved (k is a precisely known 
number): 

0 0 0

0 0 0

0 0 0 0

Q a b
Q kab

Q a b

a Q a b
Q k

b Q a b

ab Q a b c
Q k

c Q a b c

  
=  = +

  
=  = +

   
=  = + +

    (k does not appear in the expression for 
0

Q

Q

 ) 

Powers and roots 
The third case involves calculations where quantities are raised to powers or roots are taken. Here the 
fractional uncertainty of the result is the fractional uncertainty of the quantity multiplied by the 
absolute value of the power or the root (k is any precisely known number): 

0 0

| |n Q a
Q ka n

Q a

 
=  =      (k does not appear in the expression for 

0

Q

Q

 ) 

0 0

1
= n Q a

Q a
Q n a

 
 =      (k does not appear in the expression for 

0

Q

Q

 ) 

Worked examples 
1.9 (a)The sides of a rectangle are measured to be a = (4.4 ± 0.1) cm and b = (5.2 ± 0.1) cm. Find the 

area A of the rectangle. 
 (b)The radius of a sphere is R = (12.4 ± 0.1) cm. What is the volume of the sphere? 
 



Answer 
(a) The area A0 is: 

2
0 4.4 5.2 22.88 cmA =  =  . 

 

 
0.1 0.1

0.041958
22.88 4.4 5.2

A a b

a b

  
= + = + =  

222.88 0.041958 0.96 1cmA =  = 
 to 1 s.f.  Hence A = (22.88 ± 1) cm2 . To match the place value of 

the uncertainty: A =  (23 ± 1) cm2. 

(b) 34

3
V R


=  so 3 3 3

0

4
12.4 7.986 10 cm

3
V


=  =  . 

2

3

0.1
3 3 2.419 10

7.986 10 12.4

V R

R
− 

=  =  = 


. (The constant 
4

3


 does not appear in 

0

V

V


.) 

 

Hence 3 2 2 2 3 3 37.986 10 2.419 10 1.93 10 2 10 cm 0.2 10 cmV − =    =    =   to 1 s.f.  

 

Then, 3 3(7.986 0.2) 10 cmV =   . To match the place value of the uncertainty: 3 3(8.0 0.2) 10 cmV =   . 

 
 
1.10   A mass is measured to be m = (4.4 ± 0.2) kg and its speed v is measured to be (18 ± 2) m s−1. Find 

the kinetic energy of the mass. 
 

Answer 

The kinetic energy is 21
,

2
E mv=  so the mean value of the kinetic energy, E0, is: 

2
0

1
4.4 18 712.8J

2
E =   =

 

Using: 

because of0 0 0
the square

2
E m v

E m v

  
= + 

 

we find: 

0.2 2
2 0.267677

712.8 4.4 18

E
= +  =

 

So: 2712.8 0.267677 190.8J 2 10 JE =  =    to 1 s.f.  Thus, E = (7.13 ± 2) × 102 J. To match the place value 

of the uncertainty: E = (7 ± 2) × 102 J. 
 
 
1.11  The length of a simple pendulum is increased by 4%. What is the fractional increase in the 

pendulum’s period? 

 

Answer 

The period T is related to the length L through 2π .
L

T
g

=  

Because this relationship has a square root, the fractional uncertainties are related by: 



 

0 0
because of the
square root

1

2

T L

T L

 
= 

  

(the 2π does not appear here and neither does g) 

We are told that 
0

4%.
L

L


=  This means:

0

1
4% 2%

2

T

T


=  = . 

1.12 A quantity Q is measured to be =34 5Q  .  Calculate the uncertainty in a 
1

Q
, b Q2 and c Q . 

Answer 
 

a 11
Q

Q
−= , so  

( )1

1 1
0.029412

34

5
1 0.147

0.029412 34

Q

Q Q

Q

−

= =

 
= −  = =

  

( )1 0.029412 0.147 0.0043 25 0.004Q−  =  =    

Hence: 
1

0.029 0.004
Q
=  . 

 
b 2 234 1156Q = =   

 
( )2

5
2 2 2 0.147 0.29412

1156 34

Q Q

Q

 
=  =  =  =   

( )2 2 31156 0.29412 340 3 10 0.3 10Q  =  =   = 
 

Hence: 2 3(1.2 0.3) 10Q =    

 

c 34 5.83095Q = = . 

( )
( )1 1 5

0.073529 0.429.
5.83095 2 2 34

Q Q
Q

Q

 
=  =  =  =

 

Hence 34 5.8 0.4=  . 
 

 
1.13 The volume of a cylinder of base radius r and height h is given by V = πr2h. The volume is measured 

with an uncertainty of 4% and the height with an uncertainty of 2%. Determine the uncertainty in the 
radius. 

 

Answer 

We must first solve for the radius to get 
π

V
r

h
= . The percentage uncertainty is then:



( )
1 1

100% 100% 4% 2% 3%
2 2

r V h

r V h

   
 = +  = + = 

 
 

 
 
Putting it all together 
In an experiment you have to measure a certain quantity. If possible you will measure it very many 
times, say N. You will use the average of your measurements as the measured value of that quantity. 
What is the uncertainty that will be quoted for the average value? 
 

Suppose that each measurement ix  is subject to the same uncertainty x . The uncertainty in 1 Nx x+ +

is (with the rules we learned in the previous section) N x   and so the uncertainty in the average is 

N x
x

N


=  . So Δx is one possibility for the uncertainty in the average. A second possibility is the 

quantity max min

2

x x−
. A third is the standard deviation of the measurements. (But it is unlikely that you 

will measure a quantity more than 3 or say 5 times. This is a small number and the standard deviation in 
this case does not make much sense.) Which one do we use? In this course, the conservative approach is 
to take the largest of the three.  
 
As we just saw, making many measurements of the same quantity does not reduce the uncertainty; but 
we get a more accurate result if there are no systematic errors; values above and below the average 
tend to cancel out. The average is a better estimate of the quantity that is being measured compared to 
any one individual measurement. If systematic errors are present, averaging many measurements offers 
no improvement to accuracy. 
 

Suppose we measure the period of a pendulum (in seconds) ten times with a stopwatch that 
measures to the nearest 0.01 s:  

 
1.20, 1.25, 1.30, 1.13, 1.25, 1.17, 1.41, 1.32, 1.29, 1.30 (all in seconds) 

 
We calculate the mean: 

1 2 10...
1.2620s

10

t t t
t

+ + +
= =

 

and 

max min 1.41 1.13
0.140s

2 2

t t
t

− −
 = = =  

and the standard deviation: 0.081 =  s. 

But each measurement is subject to our reaction time. If this is 0.1 s then starting and stopping the 

stopwatch generates an uncertainty of 0.2 s which is way larger than the precision of 0.01 s of the 

stopwatch.  

So we have to choose between
 

0.2s, 0.081 s and 0.14 st = .
  

 
We choose the largest so here we have ∆t = 0.2 s. The uncertainty is in the first decimal place. The value 
of the average period must also be expressed to the same precision as the uncertainty, i.e. to one 

decimal place here, 1.3s.t =  We then state that: period = ( )1.3 0.2 s . 



 
There is a percentage uncertainty of 15% which is too high. We must re-evaluate our methodology; 
measuring a single period was not a good idea. We should have measured 10 periods and divided by 10. 
The time for 10 periods would be subject to an uncertainty of 0.2 s but dividing by 10 to get the period 
reduces the uncertainty to 0.2 s. 
 
As far as your experiments, your IA and your extended essay are concerned, all you have to do is provide 
any reasonable treatment of uncertainties and you will never be penalized for doing something that is 
not rigorously sound mathematically. 
 
Best-fit lines 
In mathematics, plotting a point on a set of axes is straightforward. In physics, it is slightly more involved 
because the point consists of measured or calculated values and so is subject to uncertainty. So the 

point ( )0 0,x x y y   is plotted as shown in Figure 7. The uncertainties are represented by 

uncertainty bars. To ‘go through the uncertainty bars’ a best-fit line can go through the shaded area. 

 

Figure 7 A point plotted along with its uncertainty bars. 
 

In a physics experiment we usually try to plot quantities that will give straight-line graphs. The graph 
in Figure 8 shows the variation with extension x of the tension T in a spring. The points and their 
uncertainty bars are plotted. The blue line is the best-fit line. It has been drawn by eye by trying to 
minimise the distance of the points from the line – this means that some points are above and some are 
below the best-fit line. 

The gradient (slope) of the best-fit line is found by using two points on the best-fit line as far from 
each other as possible. We use (0, 0) and (0.0390, 7.88). The gradient is then: 

gradient =
F

x




 

gradient 
7.88 0

0.0390 0

−
=

−
 

gradient = 202 N m−1 

 
The best-fit line has equation F = 202x. (The vertical intercept is essentially zero; in this equation x is in 
metres and F in newtons.) 



 

Figure 8 Data points plotted together with uncertainties in the values for the tension. To find the 
gradient, use two points on the best-fit line far apart from each other. 

 
 
Uncertainties in the gradient and intercept 
 
When the best-fit line is a straight line we can easily obtain uncertainties in the gradient and the vertical 
intercept. The idea is to draw lines of maximum and minimum gradient in such a way that they go 
through all the error bars (not just the ‘first’ and the ‘last’ points). Figure 9 shows the best-fit line (in 
blue) and the lines of maximum and minimum gradient. The green line is the line through all uncertainty 
bars of greatest gradient. The red line is the line through all uncertainty bars with smallest gradient. All 
lines are drawn by eye.  

The green line has gradient kmax = 210 N m−1 and intercept −0.18 N. The red line has gradient kmin = 
193 N m−1 and intercept +0.13 N. So we can find the uncertainty in the gradient as: 

1max min 210 193
8.5 8Nm

2 2

k k
k −− −

 = = = 
 



 

Figure 9 The best-fit line, along with lines of maximum and minimum gradient. 
 
The uncertainty in the vertical intercept is similarly: 

( )
intercept

0.13 0.18
0.155 0.2N

2

− −
 = = 

 

We saw earlier that the line of best fit has gradient 202 N m−1 and zero intercept. So we quote the 
results as k = (2.02 ± 0.08) ×102 N m−1 and vertical intercept = 0.0 ± 0.2 N. 
 
Nature of science 
A key part of the scientific method is recognising the uncertainties that are present in the experimental 
technique being used, and working to reduce these as much as possible. In this section you have learned 
how to calculate uncertainties in quantities that are combined in different ways and how to estimate 
uncertainties from graphs. You have also learned how to recognise systematic and random 
uncertainties. 

No matter how much care is taken, scientists know that their results are uncertain. But they need to 
distinguish between inaccuracy and uncertainty, and to know how confident they can be about the 
validity of their results. The search to gain more accurate results pushes scientists to try new ideas and 
refine their techniques. There is always the possibility that a new result may confirm a hypothesis for 
the present, or it may overturn current theory and open a new area of research. Being aware of doubt 
and uncertainty are key to driving science forward.  

Test yourself 

23 The magnitudes of two forces are measured to be (120 ± 5) N and (60 ± 3) N. Find the sum and 
difference of the two magnitudes, giving the uncertainty in each case. 

24 The quantity Q depends on the measured values a and b in the following ways: 

 a = , 20 1, 10 1
a

Q a b
b

=  =   

 b Q = 2a + 3b, a = 20 ± 2, b = 15 ± 3 
 c Q = a − 2b, a = 50 ± 1, b = 24 ± 1 
 d Q = a2, a = 10.0 ± 0.3 



 e 
2

2
= , 100 5, 20 2

a
Q a b

b
=  =   

 In each case, find the value of Q and its absolute and percentage uncertainty. 

25 The centripetal force is given by 
2

.
mv

F
r

=  The mass is measured to be (2.8 ± 0.1) kg, the velocity (14 

± 2) m s−1 and the radius (8.0 ± 0.2) m; find the force on the mass, including the uncertainty. 
26 The radius r of a circle is measured to be (2.4 ± 0.1) cm. Find the uncertainty in: 
 a the area of the circle 
 b the circumference of the circle. 
27 The sides of a rectangle are measured as (4.4 ± 0.2) cm and (8.5 ± 0.3) cm. Find the area and 

perimeter of the rectangle. 
28 The length L of a pendulum is increased by 2%. Find the percentage increase in the period T.  

2π
L

T
g

 
=  

 

 

29 The volume of a cone of base radius R and height h is given by 
2π

3

R h
V = . The uncertainty in the 

radius and in the height is 4%. Find the percentage uncertainty in the volume. 
30  In an experiment to measure current and voltage across a device, the following data were collected: 

(V, I ) = {(0.1, 26), (0.2, 48), (0.3, 65), (0.4, 90)}.The current was measured in mA and the voltage in 
mV. The uncertainty in the current was ± 4 mA. Plot the current versus the voltage and draw the 
best-fit line through the points. Suggest whether the current is proportional to the voltage. 

31  In a similar experiment to that in question 30, the following data were collected for current and 
voltage: (V, I ) = {(0.1, 27), (0.2, 44), (0.3, 60), (0.4, 78)} with an uncertainty of ± 4 mA in the current. 
Plot the current versus the voltage and draw the best-fit line. Suggest whether the current is 
proportional to the voltage. 

32 A circle and a square have the same perimeter. Which shape has the larger area? 
33 The graph shows the natural logarithm of the voltage across a capacitor of capacitance C = 5.0 µF as 

a function of time. The voltage is given by the equation V = V0 e−t/RC, where R is the resistance of the 
circuit. Find: 

 a the initial voltage 
 b the time for the voltage to be reduced to half its initial value 
 c the resistance of the circuit. 



 

34 The table shows the mass M of several stars and their corresponding luminosity L (power emitted). 
 a Plot L against M and draw the best-fit line. 

b Plot the logarithm of L against the logarithm of M. Use your graph to find the relationship 
between these quantities, assuming a power law of the kind L = kMα. Give the numerical value 
of the parameter α. 

Mass M (in solar 
masses) 

Luminosity L (in terms of 
the Sun’s luminosity) 

1.0 ± 0.1 1 ± 0 

3.0 ± 0.3 42 ± 4 

5.0 ± 0.5 230 ± 20 

12 ± 1 4700 ± 50 

20 ± 2 26 500 ± 300 

 

1.3 Vectors and scalars 
 
The physical quantities we will meet in this course are either scalars (i.e. they just have magnitude) or 
vectors (i.e. they have magnitude and direction). This section provides the tools you need for dealing 
with vectors.  
 
Vectors 
Some quantities in physics, such as time, distance, mass, speed and temperature, just need one number 
to specify them. These are called scalar quantities. For example, it is sufficient to say that the mass of a 
body is 64 kg or that the temperature is −5.0 °C. On the other hand, many quantities are fully specified 
only if, in addition to a number, a direction is needed. Saying that you will leave Paris now, in a train 
moving at 220 km/h, does not tell us where you will be in 30 minutes because we do not know the 
direction in which you will travel. Quantities that need a direction in addition to magnitude are called 
vector quantities. Table 7 gives some examples of vectors and scalars. 
 



Vectors Scalars 

displacement distance 

velocity speed 

acceleration mass 

force time 

weight density 

electric field electric potential 

magnetic field electric charge 

gravitational field gravitational potential 

momentum temperature 

area volume 

angular velocity work/energy/power 

 
Table 7 Examples of vectors and scalars. 
 

A vector is represented by a straight arrow, as shown in Figure 10. The direction of the arrow 
represents the direction of the vector and the length of the arrow represents the magnitude of the 
vector. To say that two vectors are the same means that both magnitude and direction are the same. 
The vectors in Figure 10a are all equal to each other. In other words, vectors do not have to start from 
the same point to be equal. In Figure 10b the two vectors have the same magnitude but opposite 
direction. 

 

We write vectors as italic boldface a or a . The magnitude is written as |a|, or a  or just a. 

 

 

Figure 10 a Representation of vectors by arrows. A vector shifted parallel to itself results in the same 
vector. b These vectors have the same magnitude but opposite direction.  
 
Multiplication of a vector by a number 
A vector can be multiplied by a number. The vector a multiplied by the positive number 2 gives a vector 
in the same direction as a but 2 times longer. The vector a multiplied by the negative number −0.5 is 
opposite to a in direction and half as long (Figure 11). The vector −a has the same magnitude as a but is 



opposite in direction.  

 

Figure11 Multiplication of a vector a  by a number results in vectors that either parallel or anti-parallel 
to a. 
 
Addition of vectors 
There are two ways to add two vectors together. 

Figure 12 shows a blue vector b  and a red vector r . We want to find the vector b r+ , the sum of b  and 

r . The sum is the single vector that has the same effect as b  and r  together. 
 
Figure 12 shows the two methods used in adding two vectors. 
 

   

                                     a                                                                                                b 
 

Figure 12 Vectors b  and r are to be added. a The parallelogram method. b The triangle method. 
 
To add two vectors with the parallelogram method:  

1 Shift them so they start at a common point O.  

2 Complete the parallelogram whose sides are b  and r .  

3 Draw the diagonal of this parallelogram starting at O. This is the vector b r+ . 
 

To add two vectors with the triangle method:  
1 Shift one vector (the red, say) so that it begins where the other (blue) ends. 

2 Join the beginning of blue to the end of red. This is the vector b r+ . 
 
The second method is used when more than two vectors need to be added, Figure 13. 

sum O sum 

a 



 

Figure 13  Adding more than two vectors. 
 
Exam tip 

 

Figure 14 
Vectors (with arrows pointing in the same sense) forming closed polygons add up to zero. 
 
Subtraction of vectors 

Figure 15 shows two vectors b  and r . We want to find the vector that equals  b  − r .  
 
To subtract two vectors: 
  

1 Reverse the direction of the vector that is being subtracted, (here r ). 

2 Now simply follow the rule for addition to add b  to (− r ).  
 

  

Figure 15 Subtraction of vectors. Here we find b  − r . 
 

Figure 16 shows the subtraction r − b . 

sum 



 

  

 
 

Figure 16 Subtraction of vectors: r − b . 
 

The result is a vector that has the same magnitude but opposite direction to the vector b  − r . 
 

Worked examples 
1.14 Copy the diagram in Figure 17a. Use the diagram to draw the third force that will keep the point P 

in equilibrium.  

 

Figure 17  
 

Answer 
We find the sum of the two given forces using the parallelogram rule and then draw the opposite of 
that vector, as shown in Figure 17b.  

1.15 A velocity vector of magnitude 1.2 m s−1 is horizontal. A second velocity vector of magnitude 2.0 m 
s−1 must be added to the first so that the sum is vertical in direction. Find the direction of the 
second vector and the magnitude of the sum of the two vectors. 

 

Answer 
We need to draw a scale diagram, as shown in Figure 18. Representing 1.0 m s−1 by 2.0 cm, we see that 
the 1.2 m s−1 corresponds to 2.4 cm and 2.0 m s−1 to 4.0 cm.  
First draw the horizontal vector. Then mark the vertical direction from O. Using a compass (or a ruler), 



mark a distance of 4.0 cm from A, which intersects the vertical line at B. AB must be one of the sides of 
the parallelogram we are looking for.  
Now measure a distance of 2.4 cm horizontally from B to C and join O to C. This is the direction in which 
the second velocity vector must be pointing. Measuring the diagonal OB (i.e. the vector representing the 
sum), we find 3.2 cm, which represents 1.6 m s−1. Using a protractor, we find that the 2.0 m s−1 velocity 
vector makes an angle of about 37° with the vertical. 

 

Figure 18 Using a scale diagram to solve a vector problem. 
 
1.16 A person walks 5.0 km east, followed by 3.0 km north and then another 4.0 km east. Find their 

final position. 
 

Answer 
The walk consists of three steps. We may represent each one by a vector (Figure 19).  
• The first step is a vector of magnitude 5.0 km directed east (OA).  
• The second is a vector of magnitude 3.0 km directed north (AB). 
• The last step is represented by a vector of 4.0 km directed east (BC).  

The person will end up at a place that is given by the vector sum of these three vectors, that is OA + AB 
+ BC, which equals the vector OC. By measurement from a scale drawing, or by simple geometry, the 
distance from O to C is 9.5 km and the angle to the horizontal is 18.4°. 

 

Figure 19 Scale drawing using 1 cm = 1 km. 
 
Vectors corresponding to line segments are shown as bold capital letters, for example OA. The 
magnitude of the vector is the length OA and the direction is from O towards A. 
 
1.17 A body moves in a circle of radius 3.0 m with a constant speed of 6.0 m s−1. The velocity vector is at 

all times tangent to the circle. The body starts at A, proceeds to B and then to C. Find the change in 
the velocity vector between A and B and between B and C (Figure 20). 



 

Figure 20  
 

Answer 
For the velocity change from A to B we have to find the difference vB − vA. and for the velocity change 
from B to C we need to find vC − vB. The vectors are shown in Figure 21. 

 

Figure 21  
The vector vB − vA is directed south-west and its magnitude is (by the Pythagorean theorem): 
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The vector vC − vB has the same magnitude as vB − vA but is directed north-west. 
 
Components of a vector 
Suppose that we use perpendicular axes x and y and draw vectors on this x–y plane. We take the origin 
of the axes as the starting point of the vectors. (Other vectors whose beginning points are not at the 
origin can be shifted parallel to themselves until they, too, begin at the origin.) Given a vector a we 
define its components along the axes as follows. From the tip of the vector draw lines parallel to the 
axes and mark the point on each axis where the lines intersect the axes (Figure 22). As seen in Figure 22, 
formally, the components have a positive or negative sign depending on which side of the axis they fall 
on.  



 

             0, 0x yA A                    0, 0x yA A                       0, 0x yA A                      0, 0x yA A   

 
Figure 22 The components of a vector A and the angle needed to calculate the components. The angle θ 
is measured counter-clockwise from the positive x-axis. 

 
The x- and y-components of A are called Ax and Ay. They are given by: 
 
Ax = A cos θ 
Ay = A sin θ 

 
where A is the magnitude of the vector and θ is the counter-clockwise angle between the vector and 
the positive x-axis. This is the formula in your data booklet. But remember that in these formulas the 
angle θ must be the one defined in Figure 22. But this angle is not always the most convenient, 
especially if it is greater than 90°. A more convenient angle to work with is the angle φ of Figure 22 but 
when using this angle the signs have to be put in by hand. This is shown in Worked example 1.18. 
 

Worked examples 
1.18 Find the components of the vectors in Figure 23. The magnitude of a is 12.0 units and that of b is 

24.0 units. 

 

Figure 23 
 

Answer 
Taking the angle from the positive x-axis, the angle for a is θ = 180° + 45° = 225° and that for b is θ = 360° 
− 30° = 330°. Thus: 

ax = 12.0 cos 225° = −8.49 bx = 24.0 cos 330° = 20.8 
ay = 12.0 sin 225° = −8.49 by = 24.0 sin 330° = −12.0 



But we do not have to use the awkward angles of 225° and 330°. For vector a it is better to use the 
angle of φ = 45°. In that case simple trigonometry gives: 

ax = −12.0 cos 45° = −8.49 and ay = −12.0 sin 45° = −8.49 

       

put in by hand put in by hand 
 
For vector b it is convenient to use the angle of φ = 30°, which is the angle the vector makes with the x-
axis. But in this case: 

bx = 24.0 cos 30° = 20.8 and by = −24.0 sin 30° = −12.0 

     

  put in by hand 
 

1.19 Find the components of the vector W along the axes shown in Figure 24. 

 

Figure 24. 

Answer 
See Figure 25. Notice that the angle between the vector W and the negative y-axis is θ. 
Then by simple trigonometry 
 
Wx = −W sin θ  (Wx is opposite the angle θ so the sine is used) 
Wy = −W cos θ  (Wy is adjacent to the angle θ so the cosine is used) 
 

(Both components are along the negative axes, so a minus sign has been put in by hand.) 

 

Figure 25 
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Reconstructing a vector from its components 
Knowing the components of a vector allows us to reconstruct it (i.e. to find the magnitude and direction 
of the vector). Suppose that we are given that the x- and y-components of a vector are Fx and Fy. We 
need to find the magnitude of the vector F and the angle θ  it makes with the x-axis (Figure 26). The 
magnitude is found by using the Pythagorean theorem and the angle by using the definition of tangent. 

y2 2 , arctanx y

x

F
F F F

F
= + =

 

 

Figure 26 Given the components of a vector we can find its magnitude and direction. 
 

In general, the simplest procedure to find the angle without getting stuck in trigonometry is to decide 

which quadrant the vector lies in and then evaluate arctan y

x

F

F
 =  i.e. ignore the signs in the 

components. The calculator will then give you the angle between the vector and the x-axis, as shown in 
Figure 27.  

 

 

 

Figure 27 The angle arctan y

x
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F
 =  is the angle shown in each diagram. 

 
So, for example, the vector with components Fx =  – 12  and Fy = 5.0 is in the second quadrant, Figure 28, 

and its direction is given by 
5.0

arctan arctan 22.6 23
12

y

x

F

F
 = = =  . 

 
5.0 

– 12 

φ 

φ                             φ 
φ                                                               φ 



Figure 28 The angle φ giving the direction of the vector. 
 
Here is another example. We need to find the magnitude and direction of the vector with components 
Fx = 2.0 and Fy = −4.0. The vector lies in the fourth quadrant, as shown in Figure 29. 

The magnitude is: 

( ) ( )
2 22 2 2.0 4.0 20 4.47 4.5x yF F F= + = + − = =  .

 

The direction is found from: 

4
arctan arctan arctan2 63

2
y

x

F

F


−
= = =  .

 

 

Figure 29 The vector is in the third quadrant.  
 
This angle is the one shown in Figure 29.  

 
Adding or subtracting vectors is very easy when we have the components, as Worked example 1.20 

shows.  

 

Worked example 
1.20 Find the sum of the vectors shown in Figure 30. F1 has magnitude 8.0 units and F2 has magnitude 

12 units. Their directions are as shown in the diagram. 

 

Figure 30 The sum of vectors F1 and F2 (not to scale). 
 

Answer 
Find the components of the two vectors: 

F1x = −F1 cos 42° = −5.945  F1y = F1 sin 42° = 5.353 
 
F2x = F2 cos 28° = 10.595  F2y = F2 sin 28° = 5.634 

– 4.0  

2.0 

φ 



 
The sum F = F1 + F2 then has components:  Fx = F1x + F2x = 4.650 and Fy = F1y + F2y = 10.987. 
 

The magnitude of the sum is therefore 2 24.650 10.987 11.9 12F = + =  . 

 

and its direction is (the vector is in the first quadrant):
10.987

arctan 67.1 67
4.65


 

= =   
 

. 

 
Nature of science 
For thousands of years, people across the world have used maps to navigate from one place to another, 
making use of the ideas of distance and direction to show the relative positions of places. The concept of 
vectors and the algebra used to manipulate them were introduced in the first half of the 19th century to 
represent real and complex numbers in a geometrical way. Scientists and mathematicians saw that this 
model could be applied to theoretical physics, and by the middle of the 19th century vectors were being 
used to model problems in electricity and magnetism.  

Resolving a vector into components and reconstructing the vector from its components are useful 
mathematical techniques for dealing with measurements in three-dimensional space. These 
mathematical techniques are invaluable when dealing with physical quantities that have both 
magnitude and direction, such as calculating the effect of multiple forces on an object. In this section we 
have done this in two dimensions, but vector algebra can be applied to three dimensions and more. 

 Test yourself 

35 A body is acted upon by the two forces shown in the diagram. In each case draw the one force 
whose effect on the body is the same as the two together. 

 

36 Vector A has a magnitude of 12.0 units and makes an angle of 30° with the positive x-axis. Vector B 
has a magnitude of 8.00 units and makes an angle of 80° with the positive x-axis. Using a graphical 
method, find the magnitude and direction of the vectors: 

 a A + B b A − B c A − 2B 
37 Repeat the previous problem, this time using components. 
38 Find the magnitude and direction of the vectors with components: 
 a Ax = −4.0 cm, Ay = −4.0 cm 
 b Ax = 124 km, Ay = −158 km 
 c Ax = 0, Ay = −5.0 m 
 d Ax = 8.0 N, Ay = 0 
39 The components of vectors A and B are as follows: (Ax = 2.00, Ay = 3.00), (Bx = −2.00, By = 5.00). Find 

the magnitude and direction of the vectors: 
 a A b B c A + B d A − B e 2A − B 
40 The position vector of a moving object has components (rx = 2, ry = 2) initially. After a certain time 

the position vector has components (rx = 5, ry = 6). Find the displacement vector. 



41 The diagram shows the velocity vector of a particle moving in a circle with speed 10 m s−1 at two 
separate points. The velocity vector is tangential to the circle. Find the vector representing the 
change in the velocity vector. 

 

42 In a certain collision, the momentum vector of a particle changes direction but not magnitude. Let p 
be the momentum vector of a particle suffering an elastic collision and changing direction by 30°. 
Find, in terms of p (= |p|), the magnitude of the vector representing the change in the momentum 
vector. 

43 The velocity vector of an object moving on a circular path has a direction that is tangent to the path 
(see diagram).  

 

 If the speed (magnitude of velocity) is constant at 4.0 m s−1, find the change in the velocity vector as 
the object moves: 

 a from A to B 
 b from B to C. 
 c What is the change in the velocity vector from A to C? How is this related to your answers 

 to a and b? 
44 For each diagram, find the components of the vectors along the axes shown. Take the magnitude of 

each vector to be 10.0 units. 



 

45 Vector A has a magnitude of 6.00 units and is directed at 60° to the positive x-axis. Vector B has a 
magnitude of 6.00 units and is directed at 120° to the positive x-axis. Find the magnitude and 
direction of vector C such that A + B + C = 0. Place the three vectors so that one begins where the 
previous ends. What do you observe? 

46 Plot the following pairs of vectors on a set of x- and y-axes. The angles given are measured counter-
clockwise from the positive x-axis. Then, using the algebraic component method, find their sum in 
magnitude and direction. 

 a 12.0 N at 20° and 14.0 N at 50° 
 b 15.0 N at 15° and 18.0 N at 105° 
 c 20.0 N at 40° and 15.0 N at 310° (i.e. −50°) 
47 Two vectors have magnitudes 5 and 9 units. What is the smallest and largest possible magnitude of 

the sum of the two vectors. 

48  A ball is attached to a string that makes an angle of 60  to the vertical. What are the components of 

the tension force T and the weight W along the two sets of axes shown? 
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